Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38133260

RESUMO

MmpL (mycobacterial membrane protein large) proteins are integral membrane proteins that have been implicated in the biosynthesis and/or transport of mycobacterial cell wall lipids. Given the cellular location of these proteins, however, it is unclear how cell wall lipids are transported beyond the inner membrane. Moreover, given that mycobacteria grow at the poles, we also do not understand how new cell wall is added in a highly localized and presumably coordinated manner. Here, we examine the relationship between two lipid transport pathways associated with the proteins MmpL11 and LprG-Rv1410c. The lipoprotein LprG has been shown to interact with proteins involved in cell wall processes including MmpL11, which is required in biofilms for the surface localization of certain lipids. Here we report that deletion of mmpL11 (MSMEG_0241) or the lprG-rv1410c operon homologues MSMEG_3070-3069 in Mycobacterium smegmatis produced similar biofilm defects that were distinct from that of the previously reported mmpL11 transposon insertion mutant. Analysis of pellicle biofilms, bacterial growth, lipid profiles, and gene expression revealed that the biofilm phenotypes could not be directly explained by changes in the synthesis or localization of biofilm-related lipids or the expression of biofilm-related genes. Instead, the shared biofilm phenotype between ΔMSMEG_3070-3069 and ΔmmpL11 may be related to their modest growth defect, while the origins of the distinct mmpL11::Tn biofilm defect remain unclear. Our findings suggest that the mechanisms that drive pellicle biofilm formation in M. smegmatis are not connected to crosstalk between the LprG-Rv1410c and MmpL11 pathways and that any functional interaction between these proteins does not relate directly to their lipid transport function.

2.
Biochemistry ; 62(16): 2426-2441, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37498555

RESUMO

Aggregated bacteria embedded within self-secreted extracellular polymeric substances, or biofilms, are resistant to antibiotics and cause chronic infections. As such, they are a significant public health threat. Heme is an abundant iron source for pathogenic bacteria during infection; many bacteria have systems to detect heme assimilated from host cells, which is correlated with the transition between acute and chronic infection states. Here, we investigate the heme-sensing function of a newly discovered multifactorial sensory hemoprotein called NosP and its role in biofilm regulation in the soil-dwelling bacterium Burkholderia thailandensis, the close surrogate of Bio-Safety-Level-3 pathogen Burkholderia pseudomallei. The NosP family protein has previously been shown to exhibit both nitric oxide (NO)- and heme-sensing functions and to regulate biofilms through NosP-associated histidine kinases and two-component systems. Our in vitro studies suggest that BtNosP exhibits heme-binding kinetics and thermodynamics consistent with a labile heme-responsive protein and that the holo-form of BtNosP acts as an inhibitor of its associated histidine kinase BtNahK. Furthermore, our in vivo studies suggest that increasing the concentration of extracellular heme decreases B. thailandensis biofilm formation, and deletion of nosP and nahK abolishes this phenotype, consistent with a model that BtNosP detects heme and exerts an inhibitory effect on BtNahK to decrease the biofilm.


Assuntos
Proteínas de Bactérias , Biofilmes , Burkholderia , Hemeproteínas , Burkholderia/classificação , Burkholderia/fisiologia , Proteínas de Bactérias/metabolismo , Hemeproteínas/metabolismo , Óxido Nítrico/metabolismo , Termodinâmica , Transdução de Sinais
3.
Microbiol Resour Announc ; 11(11): e0094422, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36287003

RESUMO

Anaysia and Caviar are temperate siphoviruses isolated from soil using Gordonia terrae 3612 and Mycobacterium smegmatis mc2155, respectively. Anaysia's 52,861-bp genome carries 102 genes, while Caviar's 47,074-bp genome carries 79 genes. Based on gene content similarity, Anaysia and Caviar are assigned to phage clusters A15 and A3, respectively.

4.
Biochemistry ; 58(48): 4827-4841, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682418

RESUMO

Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria, however, lack H-NOX domain-containing proteins. We have identified another NO-sensing protein (NosP), which is predicted to be involved in two-component signaling and biofilm regulation in many species. Here, we demonstrate that NosP participates in the previously described H-NOX/NO-responsive multicomponent c-di-GMP signaling network in Shewanella oneidensis. Strains lacking either nosP or its co-cistronic kinase nahK (previously hnoS) produce immature biofilms, while hnoX and hnoK (kinase responsive to NO/H-NOX) mutants result in wild-type biofilm architecture. We demonstrate that NosP regulates the autophosphorylation activity of NahK as well as HnoK. HnoK and NahK have been shown to regulate three response regulators (HnoB, HnoC, and HnoD) that together comprise a NO-responsive multicomponent c-di-GMP signaling network. Here, we propose that NosP/NahK adds regulation on top of H-NOX/HnoK to modulate this c-di-GMP signaling network, and ultimately biofilm formation, by governing the flux of phosphate through both HnoK and NahK. In addition, it appears that NosP and H-NOX act to counter each other in a push-pull mechanism; NosP/NahK promotes biofilm formation through inhibition of H-NOX/HnoK signaling, which itself reduces the extent of biofilm formation. Addition of NO results in a reduction of c-di-GMP and biofilm formation, primarily through disinhibition of HnoK activity.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , Óxido Nítrico/metabolismo , Shewanella/fisiologia , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Heme/metabolismo , Shewanella/genética , Transdução de Sinais
5.
Antioxid Redox Signal ; 29(18): 1872-1887, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28847157

RESUMO

SIGNIFICANCE: The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa. CRITICAL ISSUES: The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain. FUTURE DIRECTIONS: The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.


Assuntos
Bactérias/metabolismo , Heme/metabolismo , Óxido Nítrico/metabolismo
6.
Acc Chem Res ; 50(7): 1633-1639, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28605194

RESUMO

Bacterial biofilms form when bacteria adhere to a surface and produce an exopolysaccharide matrix ( Costerton Science 1999 , 284 , 1318 ; Davies Science 1998 , 280 , 295 ; Flemming Nat. Rev. Microbiol. 2010 , 8 , 623 ). Because biofilms are resistant to antibiotics, they are problematic in many aspects of human health and welfare, causing, for instance, persistent fouling of medical implants such as catheters and artificial joints ( Brunetto Chimia 2008 , 62 , 249 ). They are responsible for chronic infections in the lungs of cystic fibrosis patients and in open wounds, such as those associated with burns and diabetes. They are also a major contributor to hospital-acquired infections ( Sievert Infec. Control Hosp. Epidemiol. 2013 , 34 , 1 ; Tatterson Front. Biosci. 2001 , 6 , D890 ). It has been hypothesized that effective methods of biofilm control will have widespread application ( Landini Appl. Microbiol. Biotechnol. 2010 , 86 , 813 ). A promising strategy is to target the mechanisms that drive biofilm dispersal, because dispersal results in biofilm removal and in the restoration of antibiotic sensitivity. First documented in Nitrosomonas europaea ( Schmidt J. Bacteriol. 2004 , 186 , 2781 ) and the cystic fibrosis-associated pathogen Pseudomonas aeruginosa ( Barraud J. Bacteriol. 2006 , 188 , 7344 ; J. Bacteriol. 2009 , 191 , 7333 ), regulation of biofilm formation by nanomolar levels of the diatomic gas nitric oxide (NO) has now been documented in numerous bacteria ( Barraud Microb. Biotechnol. 2009 , 2 , 370 ; McDougald Nat. Rev. Microbiol. 2012 , 10 , 39 ; Arora Biochemistry 2015 , 54 , 3717 ; Barraud Curr. Pharm. Des. 2015 , 21 , 31 ). NO-mediated pathways are, therefore, promising candidates for biofilm regulation. Characterization of the NO sensors and NO-regulated signaling pathways should allow for rational manipulation of these pathways for therapeutic applications. Several laboratories, including our own, have shown that a class of NO sensors called H-NOX (heme-nitric oxide or oxygen binding domain) affects biofilm formation by regulating intracellular cyclic di-GMP concentrations and quorum sensing ( Arora Biochemistry 2015 , 54 , 3717 ; Plate Trends Biochem. Sci. 2013 , 38 , 566 ; Nisbett Biochemistry 2016 , 55 , 4873 ). Many bacteria that respond to NO do not encode an hnoX gene, however. My laboratory has now discovered an additional family of bacterial NO sensors, called NosP (nitric oxide sensing protein). Importantly, NosP domains are widely conserved in bacteria, especially Gram-negative bacteria, where they are encoded as fusions with or in close chromosomal proximity to histidine kinases or cyclic di-GMP synthesis or phosphodiesterase enzyme, consistent with signaling. In this Account, we briefly review NO and H-NOX signaling in bacterial biofilms, describe our discovery of the NosP family, and provide support for its role in biofilm regulation in Pseudomonas aeruginosa, Vibrio cholerae, Legionella pneumophila, and Shewanella oneidensis.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Óxido Nítrico/metabolismo
7.
Adv Microb Physiol ; 70: 1-36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528645

RESUMO

Low concentrations of nitric oxide (NO) modulate varied behaviours in bacteria including biofilm dispersal and quorum sensing-dependent light production. H-NOX (haem-nitric oxide/oxygen binding) is a haem-bound protein domain that has been shown to be involved in mediating these bacterial responses to NO in several organisms. However, many bacteria that respond to nanomolar concentrations of NO do not contain an annotated H-NOX domain. Nitric oxide sensing protein (NosP), a newly discovered bacterial NO-sensing haemoprotein, may fill this role. The focus of this review is to discuss structure, ligand binding, and activation of H-NOX proteins, as well as to discuss the early evidence for NO sensing and regulation by NosP domains. Further, these findings are connected to the regulation of bacterial biofilm phenotypes and symbiotic relationships.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Óxido Nítrico/metabolismo , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Heme/química , Hemeproteínas/química , Percepção de Quorum/fisiologia , Transdução de Sinais/fisiologia
8.
Biochemistry ; 55(35): 4873-84, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27479081

RESUMO

Nitric oxide (NO) is a freely diffusible, radical gas that has now been established as an integral signaling molecule in eukaryotes and bacteria. It has been demonstrated that NO signaling is initiated upon ligation to the heme iron of an H-NOX domain in mammals and in some bacteria. Bacterial H-NOX proteins have been found to interact with enzymes that participate in signaling pathways and regulate bacterial processes such as quorum sensing, biofilm formation, and symbiosis. Here, we review the biochemical characterization of these signaling pathways and, where available, describe how ligation of NO to H-NOX specifically regulates the activity of these pathways and their associated bacterial phenotypes.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Óxido Nítrico/fisiologia , Transdução de Sinais/fisiologia , Biofilmes , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...